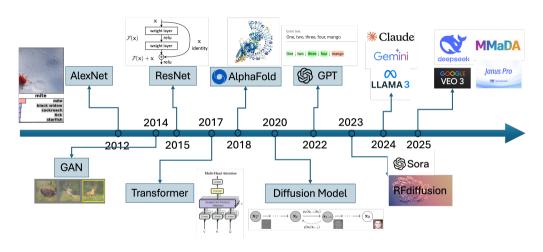
# OF DEEP LEARNING VIA FEATURE LEARNING THEORY

Andi Han (Lecturer, University of Sydney), Wei Huang (Research Scientist, RIKEN AIP & ISM)

Tutorial @ AJCAI 2025, Canberra

#### SIGNIFICANT SUCCESS OF DEEP LEARNING



 $Image\ credits\ (left \rightarrow right):\ Krizhevsky\ et\ al.\ 2012;\ Goodfellow\ et\ al.\ 2014;\ He\ et\ al.\ 2015;\ Vaswani\ et\ al.\ 2017;$   $https://alphafold.ebi.ac.uk/;\ Ho\ et\ al.\ 2020;\ https://huggingface.co/blog/alonsosilva/nexttokenprediction;\ Watson\ et\ al.\ 2023$ 

#### MODEL SIZE AND COMPLEXITY GROWTH

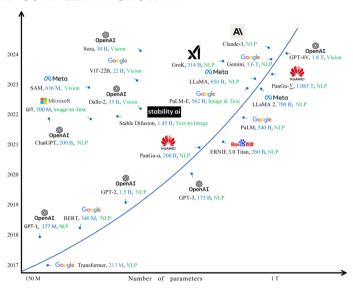


Image credits: Tu et al. 2024

#### YET WE UNDERSTAND LESS AND LESS...

- Transparency
- Robustness
- Privacy, Fairness, Biases



xkcd: machine learning

#### YET WE UNDERSTAND LESS AND LESS...

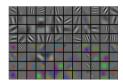
- Transparency
- Robustness
- Privacy, Fairness, Biases

Underlying principles of deep learning?

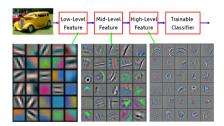


xkcd: machine learning

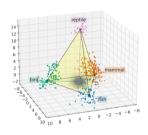
#### FEATURE LEARNING AT THE CORE OF DEEP LEARNING



AlexNet 1st layer (Krizhevsky et al. 2012)



Hierarchical feature learning (LeCun 2015)



Concept features in Gemma (Park et al. 2025)



Cross-modal features (Helbling et al. 2025)

#### **TUTORIAL BREAKDOWN**

#### Goal

- Introduce a theoretical sandbox to understand deep learning via feature learning
- Bridge empirical phenomena and theoretical insights on optimization and generalization

#### Outline

- Deep learning benefits from feature learning
- 2. A signal-and-noise data model
- 3. Benign Overfitting with Feature Learning
- Feature Learning under Different Training Strategies

- Feature Learning in Foundation Generative Models
- 5. Conclusions & outlook

#### WHY DEEP LEARNING BENEFITS FROM FEATURE LEARNING

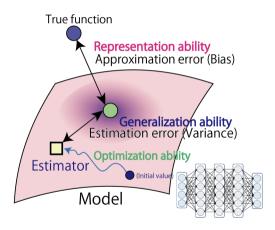
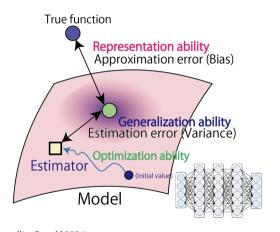


Image credits: Suzuki 2024

#### WHY DEEP LEARNING BENEFITS FROM FEATURE LEARNING



Feature Learning Affects ALL!

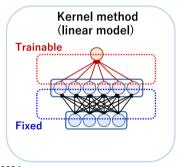
Image credits: Suzuki 2024

Two-layer Neural Network and Kernel

$$f(\boldsymbol{x}) = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} a_i \sigma(\langle \boldsymbol{w}_i, \boldsymbol{x} \rangle)$$

## Two-layer Neural Network and Kernel

$$f(\boldsymbol{x}) = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} a_i \sigma(\langle \boldsymbol{w}_i, \boldsymbol{x} \rangle)$$



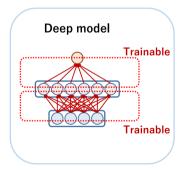


Image credits: Suzuki 2024

Target function  $f^*(\boldsymbol{x}) = \sigma^*(\langle \boldsymbol{x}, \boldsymbol{\beta}_* \rangle)$ .  $y_i = f^*(\boldsymbol{x}_i) + \epsilon_i$ ,  $\boldsymbol{x}_i \sim \mathcal{N}(0, \mathbf{I})$ ,  $\epsilon_i \sim \mathcal{N}(0, \sigma_{\epsilon}^2)$ .

Let  $\hat{f}_{\lambda} = \arg\min_{f} \frac{1}{n} \sum_{i=1}^{n} (f(\boldsymbol{x}_i) - y_i)^2 + \frac{\lambda}{N} \|\boldsymbol{a}\|^2$ .

• (Kernel) Let  $oldsymbol{w}_i$  fixed at initialization  $oldsymbol{w}_i^0$ 

$$\inf_{\lambda} \mathcal{R}(\hat{f}_{\lambda}) \ge \|\mathsf{P}_{>1} f^*\|_{L^2}^2 + o(1)$$

• (Neural Network) Let  $w_i$  be one-step gradient update from  $w_i^0$ ,\*

$$\mathcal{R}(\hat{f}_{\lambda}) < \|\mathsf{P}_{>1}f^*\|_{L^2}^2$$

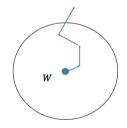
 $\text{where } \mathcal{R}(\hat{f}) = \mathbb{E}_{\boldsymbol{x}}(\hat{f}(\boldsymbol{x}) - f^*(\boldsymbol{x}))^2 \text{ is the prediction risk, and } f^*(\boldsymbol{x}) = \mu_0^* + \mu_1^*\langle \boldsymbol{x}, \boldsymbol{\beta}_* \rangle + \mathsf{P}_{>1}f^*.$ 

Ba et al. 2022. "High-dimensional Asymptotics of Feature Learning: How One Gradient Step Improves the Representation".

<sup>\*</sup> Suppose  $\sigma = \sigma^* = \tanh$ .

# Feature Learning underlies the success of deep learning!





Feature learning

$$||W(t) - W(0)||_F = O\left(\frac{1}{\sqrt{N}}\right)$$
  $||W(t) - W(0)||_F = \Omega(1)$ 

$$||W(t) - W(0)||_F = \Omega(1)$$

# SIGNAL-NOISE DATA MODEL (A SANDBOX FOR FEATURE LEARNING)

Feature Decomposition: Data  $\approx$  Signal + Noise

# SIGNAL-NOISE DATA MODEL (A SANDBOX FOR FEATURE LEARNING)

Feature Decomposition: Data  $\approx$  Signal + Noise

Signal-noise data model (Cao et al., 2022; Kou et al., 2023)

Data  $oldsymbol{x} = [yoldsymbol{\mu}, oldsymbol{\xi}]$ 

- $oldsymbol{\mu}$  (Signal)  $oldsymbol{\mu}$  is a signal vector, and y is the label
- (Noise)  $m{\xi}$  is a random noise (commonly assumed to be Gaussian  $\mathcal{N}(\mathbf{0},\sigma_{m{\xi}}^2\mathbf{I})$ )

# SIGNAL-NOISE DATA MODEL (A SANDBOX FOR FEATURE LEARNING)

Feature Decomposition: Data  $\approx$  Signal + Noise

# Signal-noise data model (Cao et al., 2022; Kou et al., 2023)

Data  $oldsymbol{x} = [yoldsymbol{\mu}, oldsymbol{\xi}]$ 

- (Signal)  $\mu$  is a signal vector, and y is the label
- (Noise)  $m{\xi}$  is a random noise (commonly assumed to be Gaussian  $\mathcal{N}(\mathbf{0},\sigma_{m{\xi}}^2\mathbf{I})$ )



Demo from Imagenet







#### BENIGN OVERFITTING WITH FEATURE LEARNING

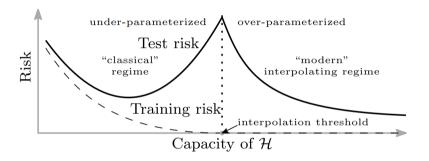


Image credit: Belkin et al. 2019. "Reconciling modern machine learning practice and the bias-variance trade-off"

# BENIGN OVERFITTING WITH FEATURE LEARNING

#### BENIGN OVERFITTING WITH FEATURE LEARNING

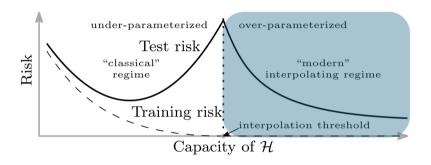


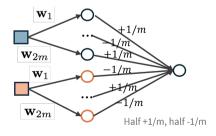
Image credit: Belkin et al. 2019. "Reconciling modern machine learning practice and the bias-variance trade-off"

#### BENIGN OVERFITTING WITH FEATURE LEARNING (MODEL SETUP)

Two-layer Convolutional Neural Network

$$f(\mathbf{W}, \boldsymbol{x}) = F_1(\mathbf{W}_1, \boldsymbol{x}) - F_{-1}(\mathbf{W}_{-1}, \boldsymbol{x})$$
 where  $F_j(\mathbf{W}_j, \boldsymbol{x}) = \frac{1}{m} \sum_{r=1}^m \sigma(\langle \boldsymbol{w}_{j,r}, \boldsymbol{x}^{(1)} \rangle) + \frac{1}{m} \sum_{r=1}^m \sigma(\langle \boldsymbol{w}_{j,r}, \boldsymbol{x}^{(2)} \rangle)$ 

where  $oldsymbol{x} = [oldsymbol{x}^{(1) op}, oldsymbol{x}^{(2) op}]^ op = [yoldsymbol{\mu}, oldsymbol{\xi}]$ 



# BENIGN OVERFITTING WITH FEATURE LEARNING (TRAINING SETUP)

- Training Data  $\{(\boldsymbol{x}_i, y_i)\}_{i=1}^n$ :
  - Binary classification:  $y = \pm 1$  with equal chance
  - $-m{x}_i=[y_im{\mu},m{\xi}_i]$ , with fixed signal  $m{\mu}$  and random noise  $m{\xi}_i\sim\mathcal{N}ig(\mathbf{0},\sigma_{m{arepsilon}}^2\mathbf{I}_dig)$
  - Define SNR=  $\|\boldsymbol{\mu}\|/(\sigma_{\xi}\sqrt{d})$
- Training Loss:

$$L_S(\mathbf{W}) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i f(\mathbf{W}, \boldsymbol{x}_i)), \qquad \ell(z) = \log(1 + \exp(-z))$$

- Test Loss:  $L_D(\mathbf{W}) = \mathbb{E}_{(\boldsymbol{x},y)} \big[ \ell \big( y f(\mathbf{W}, \boldsymbol{x}) \big) \big].$
- Training Algorithm:  $\mathbf{W}^{(t+1)} = \mathbf{W}^{(t)} \eta \nabla L_S(\mathbf{W}), \qquad \mathbf{W}^{(0)} \sim \mathcal{N}(\mathbf{0}, \sigma_0^2 \mathbf{I})$

#### BENIGN OVERFITTING WITH FEATURE LEARNING (MAIN RESULTS)

# Feature learning under (ReLU) $^q$ (Cao et al., 2022, Theorem 4.3 & 4.4)

Suppose  $\sigma=(\text{ReLU})^q$ , (q>2), under over-parameterization<sup>a</sup> and small initialization<sup>b</sup>, there exists an iterate  $\mathbf{W}^{(t)}$  with  $L_S(\mathbf{W}^{(t)}) \leq \varepsilon$  and

- Benign Overfitting: When  $n \cdot \mathsf{SNR}^q = \widetilde{\Omega}(1)$ ,
  - $-L_D(\mathbf{W}^{(t)}) \le 6\varepsilon + \exp(-n^2)$
- Harmful Overfitting: When  $n^{-1}\cdot \mathsf{SNR}^{-q}=\widetilde{\Omega}(1)$  ,
  - $-L_D(\mathbf{W}^{(t)}) \ge 0.1$

**Benign Overfitting** 

 $<sup>\</sup>mathsf{NR}^{-q} = \widetilde{\Omega}(1),$   $\mathsf{NR}^{-q} = \widetilde{\Omega}(1)$   $\mathsf{NR}^{-1} \cdot (\mathsf{SNR})^{-q} = \widetilde{\Omega}(1)$  Harmful Overfitting  $\mathsf{SNR} = \frac{\|\mu\|_2}{\sigma_p \sqrt{d}}$ 

aLarge d relative to n b Feature learning regime

#### BENIGN OVERFITTING WITH FEATURE LEARNING (KEYIDEA)

Signal-Noise Decomposition for feature learning

$$\boldsymbol{w}_{j,r}^{(t)} = \boldsymbol{w}_{j,r}^{(0)} + j \cdot \gamma_{j,r}^{(t)} \cdot \|\boldsymbol{\mu}\|^{-1} \cdot \boldsymbol{\mu} + \sum_{i=1}^{n} \rho_{j,r,i}^{(t)} \cdot \|\boldsymbol{\xi}_{i}\|^{-2} \cdot \boldsymbol{\xi}_{i}$$

such that  $\gamma_{j,r}^{(t)} \approx \langle \boldsymbol{w}_{j,r}^{(t)}, \boldsymbol{\mu} \rangle$  (signal learning) and  $\rho_{j,r,i}^{(t)} \approx \langle \boldsymbol{w}_{j,r}^{(t)}, \boldsymbol{\xi}_i \rangle$  (noise memorization)

Benign Overfitting: learn signal and ignore noise

$$\max_{r} \gamma_{j,r}^{(t)} \ge C_1 > 0, \quad \max_{j,r,i} |\rho_{j,r,i}^t| \approx 0$$
 (Signal dominates ©)

· Harmful Overfitting: memorize noise and ignore signal

$$\max_{r} \rho_{y_i,r,i}^{(t)} \ge C_2 > 0, \quad \max_{i,r} \gamma_{j,r}^{(t)} \approx 0$$

(Noise dominates ②)

### BENIGN OVERFITTING WITH FEATURE LEARNING (RELU)

#### Feature learning with ReLU (Kou et al., 2023, Theorem 4.2)

Suppose  $\sigma = \text{ReLU}$ , under over-parameterization<sup>a</sup> and small initialization<sup>b</sup>, and  $n \cdot \text{SNR}^2 = o(1)$ , there exists an iterate  $\mathbf{W}^{(t)}$  with  $L_S(\mathbf{W}^{(t)}) < \varepsilon$ :

- Benign Overfitting: When  $n\|oldsymbol{\mu}\|^4 \geq C_1 \sigma_{arepsilon}^4 d$ ,
  - $-L_D^{0-1}(\mathbf{W}^{(t)}) \le \exp\left(-n\|\boldsymbol{\mu}\|^4/(C_2\sigma_{\xi}^4d)\right)$
- Harmful Overfitting: When  $n\|oldsymbol{\mu}\|^4 \leq C_3 \sigma_{\xi}^4 d$ ,
  - $-L_D^{0-1}(\mathbf{W}^{(t)}) \ge 0.1$

where  $L_D^{0-1}(\mathbf{W}) = \mathbb{P}_{(x,y)}[y \neq \operatorname{sign}(f(\mathbf{W},x))]$  is the test error.

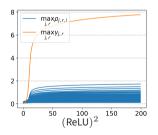
Key differences to  $(ReLU)^q$ : Constant separation and low-SNR regime.

# BENIGN OVERFITTING WITH FEATURE LEARNING (A COMPARISON OF FEATURE LEARNING)

# $(ReLU)^q$ : Polynomial growth

$$\gamma_{j,r}^{(t+1)} \approx (1 - \eta_{\gamma}) (\gamma_{j,r}^{(t)})^{q-1}$$

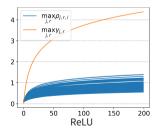
$$\rho_{j,r,i}^{(t+1)} \approx (1 - \eta_{\xi}) (\rho_{j,r,i}^{(t)})^{q-1}$$



#### **ReLU**: Linear growth

$$\gamma_{j,r}^{(t+1)} \approx \gamma_{j,r}^{(t+1)} + \eta_{\gamma}'$$

$$\rho_{j,r,i}^{(t+1)} \approx \rho_{j,r,i}^{(t)} + \eta_{\xi}'$$



#### FEATURE LEARNING WITH LABEL NOISE

Label noise is common: the observed label  $\tilde{y}$  is not equal to the ground-truth label y!

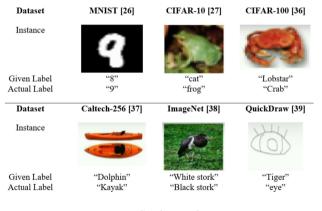


Image credit: Bhatt et al. 2024

# Feature learning under label noise (Han et al., 2025b, Theorem 4.2 & 4.4)

Observed label  $\tilde{y} \neq y$  (with  $\mathbb{P}(\tilde{y} \neq y) = \tau$ ), and  $\sigma = \text{ReLU}$ ,  $n \cdot \text{SNR}^2 = \Theta(1)$ 

Two-stage behavior

# Feature learning under label noise (Han et al., 2025b, Theorem 4.2 & 4.4)

Observed label  $\tilde{y} \neq y$  (with  $\mathbb{P}(\tilde{y} \neq y) = \tau$ ), and  $\sigma = \text{ReLU}$ ,  $n \cdot \text{SNR}^2 = \Theta(1)$ 

# Two-stage behavior

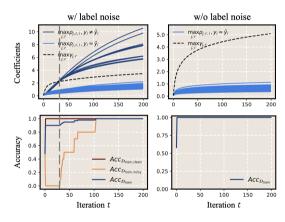
- Stage I (Model fits clean data): there exists  $T_1$  s.t.
  - Model learns more signal than noise, i.e.,  $\gamma_{j,r}^{(T_1)}>
    ho_{ ilde{y}_i,r,i}^{(T_1)}$
  - For all clean samples:  $ilde{y}_i f(\mathbf{W}^{(T_1)}, m{x}_i) \geq 0$ . For all noisy samples:  $ilde{y}_i f(\mathbf{W}^{(T_1)}, m{x}_i) < 0$
  - Early stopping works:  $L_D^{0-1}(\mathbf{W}^{(T_1)}) \leq \exp(-\Omega(d/n))$

# Feature learning under label noise (Han et al., 2025b, Theorem 4.2 & 4.4)

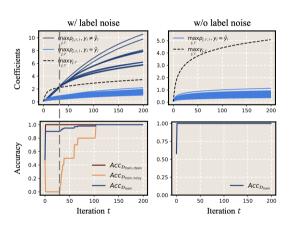
Observed label  $\tilde{y} \neq y$  (with  $\mathbb{P}(\tilde{y} \neq y) = \tau$ ), and  $\sigma = \text{ReLU}$ ,  $n \cdot \text{SNR}^2 = \Theta(1)$ 

# Two-stage behavior

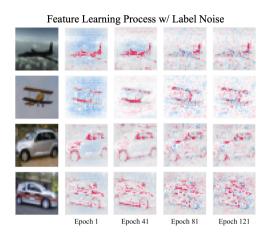
- Stage I (Model fits clean data): there exists  $T_1$  s.t.
  - Model learns more signal than noise, i.e.,  $\gamma_{j,r}^{(T_1)}>
    ho_{ ilde{y}_i,r,i}^{(T_1)}$
  - For all clean samples:  $ilde{y}_i f(\mathbf{W}^{(T_1)}, m{x}_i) \geq 0$ . For all noisy samples:  $ilde{y}_i f(\mathbf{W}^{(T_1)}, m{x}_i) < 0$
  - Early stopping works:  $L_D^{0-1}(\mathbf{W}^{(T_1)}) \leq \exp(-\Omega(d/n))$
- Stage II (Model overfits noisy data): there exists  $t^* \geq T_1$  such that
  - For most if not all samples:  $ilde{y}_i f(\mathbf{W}^{(T_1)}, m{x}_i) \geq 0$ .
  - Model fails to generalize:  $L_D^{0-1}(\mathbf{W}^{(t^*)}) \geq 0.5 au$



Synthetic data



Synthetic data



VGG on CIFAR-10 with label noise.

The emergence of large language models (LLMs) is due to Transformers.

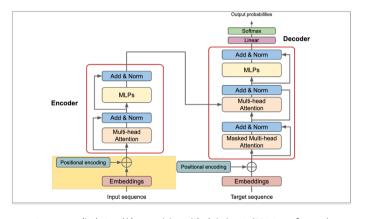


Image credit: https://deeprevision.github.io/posts/001-transformer/

To analyze benign overfitting, focus on the core mechanism: attention.

• Consider a single-head Transformer with *global average pooling* (Jiang et al., 2024):

$$f(\mathbf{X}) = \underbrace{\frac{1}{L} \sum_{\ell=1}^{L}}_{\text{Avg Pooling}} \underbrace{\operatorname{Softmax}(\boldsymbol{x}^{(\ell)} \mathbf{W}_Q \mathbf{W}_K^{\top} \mathbf{X}^{\top})}_{\text{Attention for token } l} \mathbf{X} \mathbf{W}_V \boldsymbol{w}_o$$

where 
$$\mathbf{X} = [\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, ..., \boldsymbol{x}^{(L)}]^{ op} \in \mathbb{R}^{L \times d}$$
.

# Training data ( $\mathbf{X}_i, y_i$ ):

• 
$$\pmb{x}^{(1)} = y \pmb{\mu}$$
 (signal),  $\pmb{x}^{(2)},...,\pmb{x}^{(L)} \sim \mathcal{N}(\pmb{0},\sigma_{\xi}^2 \mathbf{I})$  (noise).

Feature learning in Transformers (Jiang et al., 2024, Theorem 4.1 & 4.2)

There exists T , s.t.  $L_S(\mathbf{\Theta}^{(T)}) pprox 0$  and

# Feature learning in Transformers (Jiang et al., 2024, Theorem 4.1 & 4.2)

There exists T, s.t.  $L_S(\mathbf{\Theta}^{(T)}) pprox 0$  and

- Benign overfitting: under condition  $n \cdot \mathrm{SNR}^2 = \Omega(1)$ 
  - Attention on signal:  $\langle \mathbf{W}_Q^{(T)} \boldsymbol{x}^{(\ell)}, \mathbf{W}_K^{(T)} \boldsymbol{\mu} \rangle = \Omega(1)$ ,  $\langle \mathbf{W}_Q^{(T)} \boldsymbol{x}^{(\ell)}, \mathbf{W}_K^{(T)} \boldsymbol{\xi} \rangle \approx 0$
  - Value focuses on  $signal: \langle \mathbf{W}_V^{(T)} m{w}_o, m{\mu} 
    angle > \langle \mathbf{W}_V^{(T)} m{w}_o, m{\xi} 
    angle$
  - The test loss is nearly zero:  $L_D(\mathbf{\Theta}^{(T)})pprox 0$

# Feature learning in Transformers (Jiang et al., 2024, Theorem 4.1 & 4.2)

There exists T, s.t.  $L_S(\mathbf{\Theta}^{(T)}) \approx 0$  and

- Benign overfitting: under condition  $n \cdot \mathrm{SNR}^2 = \Omega(1)$ 
  - Attention on signal:  $\langle \mathbf{W}_Q^{(T)} \boldsymbol{x}^{(\ell)}, \mathbf{W}_K^{(T)} \boldsymbol{\mu} \rangle = \Omega(1)$ ,  $\langle \mathbf{W}_Q^{(T)} \boldsymbol{x}^{(\ell)}, \mathbf{W}_K^{(T)} \boldsymbol{\xi} \rangle \approx 0$
  - Value focuses on signal:  $\langle \mathbf{W}_V^{(T)} m{w}_o, m{\mu} 
    angle > \langle \mathbf{W}_V^{(T)} m{w}_o, m{\xi} 
    angle$
  - The test loss is nearly zero:  $L_D(\mathbf{\Theta}^{(T)})pprox 0$
- Harmful overfitting: under condition  $n^{-1}\cdot \mathrm{SNR}^{-2} = \Omega(1)$ 
  - Attention on *noise*:  $\langle \mathbf{W}_Q^{(T)} \boldsymbol{x}^{(\ell)}, \mathbf{W}_K^{(T)} \boldsymbol{\xi} \rangle = \Omega(1)$ ,  $\langle \mathbf{W}_Q^{(T)} \boldsymbol{x}^{(\ell)}, \mathbf{W}_K^{(T)} \boldsymbol{\mu} \rangle \approx 0$
  - Value focuses on *noise*:  $\langle \mathbf{W}_V^{(T)} m{w}_o, m{\xi} 
    angle > \langle \mathbf{W}_V^{(T)} m{w}_o, m{\mu} 
    angle$
  - The test loss is high:  $L_D(\mathbf{\Theta}^{(T)}) = \Theta(1)$

#### OTHER RELEVANT WORKS

Meng et al. 2024. Benign overfitting in two-layer ReLU convolutional neural networks for XOR data. *International Conference on Machine Learning (ICML 2025*).

Huang et al. 2025. Quantifying the Optimization and Generalization Advantages of Graph Neural Networks Over Multilayer Perceptrons. *International Conference on Artificial Intelligence and Statistics (AISTATS 2025)*.

Karhadkar et al. 2024. Benign overfitting in leaky relu networks with moderate input dimension. *Advances in Neural Information Processing Systems (NeurIPS 2024)*.

Shang et al. 2024. Initialization Matters: On the Benign Overfitting of Two-Layer ReLU CNN with Fully Trainable Layers. *arXiv preprint arXiv:2410.19139*.

Sakamoto & Sato. 2025. Benign Overfitting in Token Selection of Attention Mechanism. *International Conference on Machine Learning (ICML 2025)*.

Frei et al. 2022. Benign overfitting without linearity: Neural network classifiers trained by gradient descent for noisy linear data. *Conference on Learning Theory (COLT 2022).* 

# FEATURE LEARNING UNDER DIFFERENT TRAINING STRATEGIES

### FEATURE LEARNING UNDER DIFFERENT TRAINING STRATEGY

Optimization and Generalization are entangled in Deep Learning

### FEATURE LEARNING UNDER DIFFERENT TRAINING STRATEGY

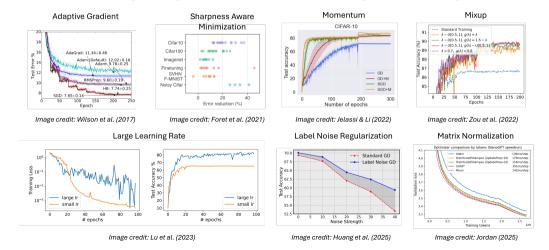
Optimization and Generalization are entangled in Deep Learning

• A tweak in training strategy can drastically affect convergence in training and test error

### FEATURE LEARNING UNDER DIFFERENT TRAINING STRATEGY

### Optimization and Generalization are entangled in Deep Learning

A tweak in training strategy can drastically affect convergence in training and test error



### Adam (Kigma & Ba 2015)

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$$

$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t \odot g_t$$

$$\theta_{t+1} = \theta_t - \eta_t \frac{m_t}{\sqrt{v_t} + \epsilon}$$

Sign-GD (Adam when  $\beta_1=\beta_2=0$ )

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \eta_t \operatorname{sign}(\boldsymbol{g}_t)$$

# Sign GD close to Adam

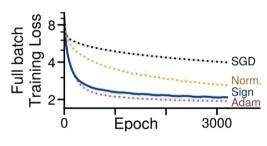


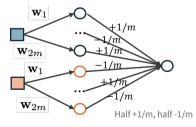
Image Credit: Kunstner et al. 2023.

# A sparse signal-noise model (Zou et al., 2023)

Data  $oldsymbol{x} = [yoldsymbol{\mu}, oldsymbol{\xi}]$ 

- (Signal)  $\mu = [1, 0, 0, ..., 0]^{\top}$
- (Noise)  $m{\xi} = \widetilde{m{\xi}} \odot m{s}$ , where  $\widetilde{m{\xi}} \sim \mathcal{N}(m{0}, \sigma_{m{\xi}}^2 \mathbf{I}_d)$ ,  $m{s} \in \{0,1\}^d$  is a random binary mask $^a$

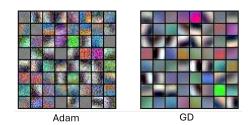
Consider the same two-layer CNN (with  $\sigma = \operatorname{ReLU}^q$   $(q \geq 3)$ )



<sup>&</sup>lt;sup>a</sup>Further adversarial feature noise is added

# Adam generalizes worse than GD (Zou et al., 2023, Theorem 4.1)

- Adam can output a stationary point  $\mathbf{W}_{\mathrm{adam}}$  in  $L_1$  norm with
  - $L_S(\mathbf{W}_{\mathrm{adam}}) pprox 0$ ,  $L_D^{0-1}(\mathbf{W}_{\mathrm{adam}}) \geq 0.5$
- ullet GD can output a point  $\mathbf{W}_{\mathrm{gd}}$  in  $L_2$  norm with
  - $L_S(\mathbf{W}_{\mathrm{gd}}) pprox 0$ ,  $L_D^{0-1}(\mathbf{W}_{\mathrm{gd}}) \leq 1/\mathrm{poly}(n)$



Adam learns more noisy features than GD (AlexNet on CIFAR-10).

### Adam/Sign-GD learns noise faster

$$\langle \boldsymbol{w}_{j,r}^{(t+1)}, j \cdot \boldsymbol{v} \rangle \le \langle \boldsymbol{w}_{j,r}^{(t)}, j \cdot \boldsymbol{v} \rangle + \eta$$
  
 $\langle \boldsymbol{w}_{y_i,r}^{(t+1)}, \boldsymbol{\xi}_i \rangle \approx \langle \boldsymbol{w}_{y_i,r}^{(t)}, \boldsymbol{\xi}_i \rangle + \eta s \sigma_{\xi}$ 

noise dominates as  $s\sigma_{\mathcal{E}}\gg 1$ 

### **GD** learns signal faster

$$\langle \boldsymbol{w}_{j,r}^{(t+1)}, j \cdot \boldsymbol{v} \rangle \ge \langle \boldsymbol{w}_{j,r}^{(t)}, j \cdot \boldsymbol{v} \rangle + \eta \langle \boldsymbol{w}_{j,r}^{(t)}, j \cdot \boldsymbol{v} \rangle^{q-1}$$
$$\langle \boldsymbol{w}_{j,r}^{(t+1)}, \boldsymbol{\xi}_i \rangle \le \langle \boldsymbol{w}_{j,r}^{(t)}, \boldsymbol{\xi}_i \rangle + \eta s \sigma_{\boldsymbol{\xi}}^2 / n \langle \boldsymbol{w}_{j,r}^{(t)}, \boldsymbol{\xi}_i \rangle^{q-1}$$

signal dominates as  $s\sigma_{\xi}^2/n\ll 1$ 

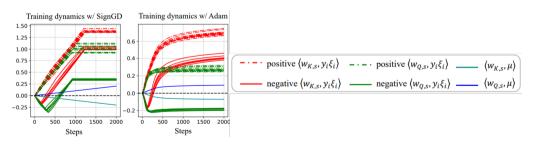
### FEATURE LEARNING WITH SIGN GD FOR TRANSFORMER

For a two-layer transformer: a similar result holds

# Sign GD converges fast but generalize poorly (Li et al., 2025)

There exists T such that

- ullet Training converges but test loss remains large:  $L_S^{(T)}(\mathbf{W}^{(T)}) \leq \epsilon$ , and  $L_D^{(T)}(\mathbf{W}^{(T)}) = \Theta(1)$ .
- Value, query and key matrices memorizes noise.



### FEATURE LEARNING UNDER DIFFERENT OPTIMIZERS (SAM)

For deep learning, loss landscape is highly nonconvex.

Minimum found by GD (sharp)



$$\boldsymbol{w}^{(t+1)} = \boldsymbol{w}^{(t)} - \eta \nabla_{\boldsymbol{w}} L(\boldsymbol{w}^{(t)})$$

Minimum found by SAM (flat)



$$g^{(t)} = \nabla_{\boldsymbol{w}} L \left( \boldsymbol{w}^{(t)} + \tau \frac{\nabla_{\boldsymbol{w}} L(\boldsymbol{w}^{(t)})}{\|\nabla_{\boldsymbol{w}} L(\boldsymbol{w}^{(t)})\|} \right)$$
$$\boldsymbol{w}^{(t+1)} = \boldsymbol{w}^{(t)} - \eta \boldsymbol{g}^{(t)}$$

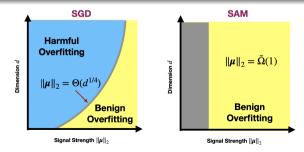
### FEATURE LEARNING UNDER DIFFERENT OPTIMIZERS (SAM)

# Benign Overfitting of SAM (Chen et al., 2023)

Under Signal-noise data model  $x=[y \mu, \xi]$  and two-layer CNN model with  $\sigma={\rm ReLU}$ , suppose  $\|\mu\|=\widetilde{\Omega}(1)$ , a then neural network first trained with SAM, then with SGD can find  $\mathbf{W}^{(T)}$  with

lpha small training loss  $L_S(\mathbf{W}^{(T)})pprox 0$  and small test error  $L_D^{0-1}(\mathbf{W}^{(T)})pprox 0$  .

 $<sup>^</sup>a$ this is milder compared to GD Kou et al. (2023), requiring  $\|oldsymbol{\mu}\|^4 = \widetilde{\Omega}(d/n)$ .



### FEATURE LEARNING UNDER DIFFERENT OPTIMIZERS (LABEL NOISE SGD)

Label Noise SGD: A simple regularization by introducing randomness to labels during training.

# For each step t and sample $(x_i, y_i)$ :

1. Sample a random variable  $\epsilon_i^{(t)}$ :

$$\epsilon_i^{(t)} = egin{cases} 1 & \mathsf{prob}\,1-p & \mathsf{(Keep)} \\ -1 & \mathsf{prob}\,p & \mathsf{(Flip)} \end{cases}$$

2. Update weights using the noisy gradient:

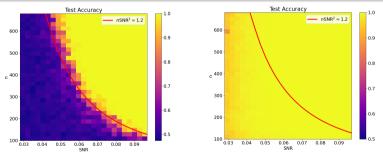
$$\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} - \eta \frac{1}{n} \sum_{i=1}^{n} \nabla \ell(\epsilon_i^{(t)} y_i, f(\boldsymbol{x}_i))$$

### FEATURE LEARNING UNDER DIFFERENT OPTIMIZERS (LABEL NOISE SGD)

# Improved Generalization of Label Noise GD (Huang et al., 2025)

Under Signal-noise data model  $x=[y\mu,\xi]$  and two-layer CNN model with  $\sigma={\sf ReLU}^2$ , then neural network trained with Label Noise GD can find  ${\bf W}^{(T)}$  with

ullet constant training loss  $L_S(\mathbf{W}^{(T)})=\Theta(1)$  and small test error  $L_D^{0-1}(\mathbf{W}^{(T)})pprox 0.$ 

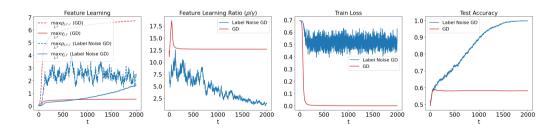


Fails in Low SNR

Robust across regimes

# FEATURE LEARNING UNDER DIFFERENT OPTIMIZERS (LABEL NOISE SGD)

| Component               | Standard GD                | Label Noise GD                 |
|-------------------------|----------------------------|--------------------------------|
| Signal $(\gamma^{(t)})$ | Grows until loss $pprox 0$ | Grows exponentially (Stage II) |
| Noise ( $ ho^{(t)}$ )   | Dominate & Unbounded       | Suppressed & Bounded           |



# OTHER RELEVANT WORKS [1]

Jelassi & Li. 2022. Towards understanding how momentum improves generalization in deep learning. *International Conference on Machine Learning (ICML 2022)*.

Chen et al. 2022. Towards understanding the mixture-of-experts layer in deep learning. *Advances in Neural Information Processing Systems (NeurIPS 2022).* 

Zou et al. 2023. The benefits of mixup for feature learning. International Conference on Machine Learning (ICML 2023).

Chen et al. 2023. Understanding and improving feature learning for out-of-distribution generalization. *Advances in Neural Information Processing Systems (NeurIPS 2023)*.

Pan et al. 2024. Federated learning from vision-language foundation models: Theoretical analysis and method. *Advances in Neural Information Processing Systems (NeurIPS 2024).* 

Oh & Yun. 2024. Provable benefit of cutout and cutmix for feature learning. *Advances in Neural Information Processing Systems (NeurIPS 2024)*.

# OTHER RELEVANT WORKS [2]

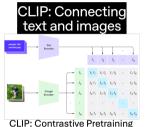
Huang et al. 2024. Understanding convergence and generalization in federated learning through feature learning theory. *International Conference on Learning Representations (ICLR 2024).* 

Lu et al. 2024. Benign Oscillation of Stochastic Gradient Descent with Large Learning Rate. *International Conference on Learning Representations (ICLR 2024).* 

Oh et al. 2025. From linear to nonlinear: Provable weak-to-strong generalization through feature learning. *Advances in Neural Information Processing Systems (NeurIPS 2025).* 

# FEATURE LEARNING IN FOUNDATION GENERATIVE MODELS

#### FEATURE LEARNING IN FOUNDATION GENERATIVE MODELS





Multimodal LLM



Diffusion Model



Reasoning LLM

#### MULTI-MODEL CONTRASTIVE LEARNING

Contrastive learning

Draw similar objects (positive) closer. Repel dissimilar objects (negative)



Image credit: Schroff et al. 2015.

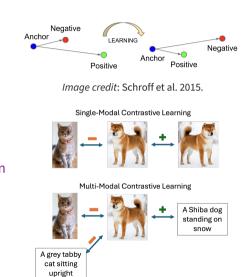
#### MULTI-MODEL CONTRASTIVE LEARNING

# Contrastive learning

Draw similar objects (positive) closer. Repel dissimilar objects (negative)

- Single-Modal: positive pairs from data augmentation
- Multi-Modal: positive pairs from other modalities

WHAT IS THE DIFFERENCE?



# MULTI-MODEL CONTRASTIVE LEARNING [1]

### Multi-modal Signal-Noise Model (Huang et al., 2024)

Two modalities:

$$m{x} = [m{x}^{(1)}, m{x}^{(2)}] = [ym{\mu}, m{\xi}], \ \ \widetilde{m{x}} = [\widetilde{m{x}}^{(1)}, \widetilde{m{x}}^{(2)}] = [y\widetilde{m{\mu}}, \widetilde{m{\xi}}]$$
 (label sharing).

Nonlinear Embedding:

Let 
$$\mathrm{Emb}(\boldsymbol{x}) = \sigma(\mathbf{W}\boldsymbol{x})$$
 and  $\mathrm{Emb}(\widetilde{\boldsymbol{x}}) = \sigma(\widetilde{\mathbf{W}}\widetilde{\boldsymbol{x}})$  where  $\sigma = \mathrm{ReLU}$ .

Data Augmentation:

$$\widehat{m{x}} = [\widehat{m{x}}^{(1)}, \widehat{m{x}}^{(2)}] = [ym{\mu}, m{\xi} + m{\epsilon}], \quad m{\epsilon} \sim \mathcal{N}(\mathbf{0}, \sigma_{\epsilon}^2 \mathbf{I})$$

Patch-wise Similarity:

$$\operatorname{Sim}(\boldsymbol{x}, \boldsymbol{x}') = \left\langle \operatorname{Emb}(\boldsymbol{x}^{(1)}), \operatorname{Emb}(\boldsymbol{x}'^{(1)}) \right\rangle + \left\langle \operatorname{Emb}(\boldsymbol{x}^{(2)}), \operatorname{Emb}(\boldsymbol{x}'^{(2)}) \right\rangle$$

# MULTI-MODEL CONTRASTIVE LEARNING [2]

Contrastive Loss:

$$\ell\left(\boldsymbol{x}, \boldsymbol{x}^+, \{\boldsymbol{x}_j^-\}_{j=1}^M\right) = -\log\left(\frac{e^{\operatorname{Sim}(\boldsymbol{x}_i, \widehat{\boldsymbol{x}}_i)/\tau}}{e^{\operatorname{Sim}(\boldsymbol{x}, \widehat{\boldsymbol{x}}')/\tau} + \sum_{j \neq i}^M e^{\operatorname{Sim}(\boldsymbol{x}, \widehat{\boldsymbol{x}}')/\tau}}\right)$$

– Single-Modal:

$$L = \frac{1}{n} \sum_{i=1}^{n} \ell \left( oldsymbol{x}_i, \widehat{oldsymbol{x}}_i, \{oldsymbol{x}_j\}_{j 
eq i}^M 
ight)$$

– Multi-Modal:

$$L = \frac{1}{n} \sum_{i=1}^{n} \ell \left( \boldsymbol{x}_{i}, \widetilde{\boldsymbol{x}}_{i}, \{\widetilde{\boldsymbol{x}}_{j}\}_{j \neq i}^{M} \right)$$

Focus on the feature learning of the first modality, i.e.,  $\mu, \xi_i$ .

#### MULTI-MODEL CONTRASTIVE LEARNING

# Multi-modal benefits from cooperation between modalities (Huang et al., 2024)

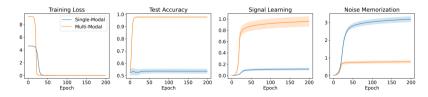
Suppose 
$$n \cdot \mathrm{SNR}^2 = \Theta(1)$$
 and  $\|\widetilde{\boldsymbol{\mu}}\| = C_{\mu} \|\boldsymbol{\mu}\| > \|\boldsymbol{\mu}\|$ .

Single-Modal: memorize noise (data augmentation does not change SNR)

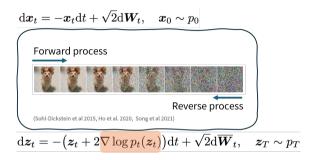
$$\langle \boldsymbol{w}_r^{(T)}, \boldsymbol{\mu} \rangle \approx 0, \quad \langle \boldsymbol{w}_r^{(T)}, \boldsymbol{\xi}_i \rangle \geq C$$

lacksquare Multi-Modal: learn signal  $(\|\widetilde{oldsymbol{\mu}}\|>\|oldsymbol{\mu}\|)$ 

$$\langle \boldsymbol{w}_r^{(T)}, \boldsymbol{\mu} \rangle \geq C', \quad \langle \boldsymbol{w}_r^{(T)}, \boldsymbol{\xi}_i \rangle \approx 0$$



#### **DIFFUSION MODEL**

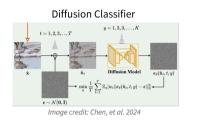


Diffusion model learns the score function via denoising score matching (Ho et al., 2020)

$$\min_{\mathbf{W}} \mathbb{E}_{\boldsymbol{x}_0 \sim p_0, \boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I}), t \in [0, T]} \| f(\mathbf{W}, \alpha_t \boldsymbol{x}_0 + \beta_t \boldsymbol{\epsilon}, t) - \boldsymbol{\epsilon} \|^2$$

#### DIFFUSION MODEL FEATURE LEARNING

Question: What is the feature learning process of diffusion model? Why do we care?



Semantic Segmentation

Image credit: Baranchuk, et al. 2022

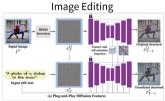


Image credit: Tumanyan et al. 2023

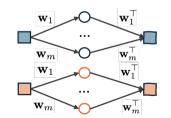
#### DIFFUSION MODEL FEATURE LEARNING

Han et al. (2025a) compares feature learning of diffusion model with classification models

**Diffusion Model** 

$$f(\mathbf{W}, x) = [f_1(\mathbf{W}, x^{(1)}), f_2(\mathbf{W}, x^{(2)})]^{\top}, \qquad f(\mathbf{W}, x) = F_1(\mathbf{W}_1, x) - F_{-1}(\mathbf{W}_{-1}, x),$$

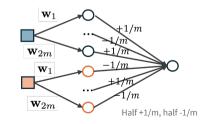
$$f_p(\mathbf{W}, \boldsymbol{x}^{(p)}) = \frac{1}{\sqrt{m}} \sum_{r=1}^m \sigma(\langle \boldsymbol{w}_r, \boldsymbol{x}^{(p)} \rangle) \boldsymbol{w}_r$$



### Classification Model

$$f(\mathbf{W}, x) = F_1(\mathbf{W}_1, x) - F_{-1}(\mathbf{W}_{-1}, x),$$

$$f_p(\mathbf{W}, \boldsymbol{x}^{(p)}) = \frac{1}{\sqrt{m}} \sum_{r=1}^m \sigma(\langle \boldsymbol{w}_r, \boldsymbol{x}^{(p)} \rangle) \boldsymbol{w}_r \qquad F_j(\mathbf{W}, \boldsymbol{x}) = \frac{1}{m} \sum_{r=1}^m \sum_{p=1,2} \sigma(\langle \boldsymbol{w}_{j,r}, \boldsymbol{x}^{(p)} \rangle)$$



#### DIFFUSION MODEL FEATURE LEARNING

### (Han et al., 2025a, Theorem 3.1 & 3.2)

### Diffusion Model learns balanced features

• There exists a stationary point  $\mathbf{W}^*$  such that

$$|\langle \boldsymbol{w}_r^*, \boldsymbol{\mu} \rangle| / |\langle \boldsymbol{w}_r^*, \boldsymbol{\xi} \rangle| = \Theta(n \cdot \text{SNR}^2)$$

### Classification learns dominate features

- There exists  $\mathbf{W}^*$  with  $L_S(\mathbf{W}^*) \approx 0$ :

  - When  $n \cdot \mathrm{SNR}^2 \geq \overline{C}$ , then  $|\langle \boldsymbol{w}_r^*, \boldsymbol{\mu} \rangle| \geq C, \quad |\langle \boldsymbol{w}_r^*, \boldsymbol{\xi}_i \rangle| \approx 0$  (Signal dominates)
  - When  $n\cdot \mathrm{SNR}^2 \leq \underline{C}$ , then  $|\langle \boldsymbol{w}_r^*, \boldsymbol{\mu} \rangle| \approx 0, \quad |\langle \boldsymbol{w}_r^*, \boldsymbol{\xi}_i \rangle| \geq C'$  (Noise dominates)

#### IN-CONTEXT LEARNING

**In-context learning** is the ability of LLMs that learn new rules with few examples.

Fill in the blank with one word: Apple - red, Watermelon - \_\_\_\_

Apple - red, Watermelon - green

Fill in the blank: 311 - 5, 4569 - 24, 12 - \_\_\_\_

**⑤** 311 - 5, 4569 - 24, 12 - **3** 

Question: Can we understand in-context learning from feature learning?

### IN-CONTEXT LEARNING FEATURE LEARNING

Bu et al. (2024): Each prompt contains a shared concept/task, with the input

$$\mathbf{H} = egin{pmatrix} m{x}_1 & m{x}_2 & \cdots & m{x}_L & m{x}_q \ m{y}_1 & m{y}_2 & \cdots & m{y}_L & m{0} \end{pmatrix},$$
 Goal: predict  $y_q$ 

Each concept k encodes binary semantics  $y = \pm 1$ :

$$x_{\ell} \in \{a_k + yb_k\}, \qquad y_{\ell} \in \{c_k + yd_k\}$$

Training data  $(\mathbf{H}_n, y_n)_{n=1}^N$ :

- Sample  $k \in [K]$  and  $y \in \{\pm 1\}$
- Construct query  $x_q = a_k + yb_k + \xi$ ,  $y_q = c_k + yd_k + \xi'$
- Sample prompt examples:  $y_\ell \in \{\pm 1\}$ ,  $x_\ell = a_k + y_\ell b_k + \xi_\ell$ ,  $y_\ell = c_k + y_\ell d_k + \xi'_\ell$ ,  $\ell \in [L]$

# IN-CONTEXT LEARNING FEATURE LEARNING [1]

Suppose we train a two-layer transformer on  $(\mathbf{H}_n, y_n)$  with expected *cross entropy loss* 

$$f(\mathbf{H}) = r^{\top} \text{ReLU} \left( \mathbf{W}_O \operatorname{attn}(\mathbf{H}) \right), \quad \operatorname{attn}(\mathbf{H}) = \sum_{\ell=1}^{L} \mathbf{W}_V h_{\ell} \operatorname{smax} \left( h_{\ell}^{\top} \mathbf{W}_K^{\top} \mathbf{W}_Q h_q \right)$$

with the following parameterization

$$\mathbf{W}_Q = egin{pmatrix} \mathbf{W}_Q^x & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}, \quad \mathbf{W}_K = egin{pmatrix} \mathbf{W}_K^x & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}, \quad \mathbf{W}_V = egin{pmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{pmatrix}, \quad \mathbf{W}_O = egin{pmatrix} \mathbf{0} & \mathbf{w}_O^y \end{pmatrix}$$

Attention only attends to demo inputs and output only depends on demo output.

# IN-CONTEXT LEARNING FEATURE LEARNING [2]

# Transformer learns *concepts* and *semantics* for in-context learning (Bu et al., 2024) Upon convergence

•  $\mathbf{W}_Q$ ,  $\mathbf{W}_K$  learn *semantics* rather than concept:

$$\mathbf{a}_k^{\top} \mathbf{W}_Q^x \mathbf{a}_k \approx 0, \quad \mathbf{b}_k^{\top} \mathbf{W}_Q^x \mathbf{b}_k = \Omega(1),$$
  
 $\mathbf{a}_k^{\top} \mathbf{W}_K^x \mathbf{a}_k \approx 0, \quad \mathbf{b}_k^{\top} \mathbf{W}_K^x \mathbf{b}_k = \Omega(1),$ 

•  $\mathbf{W}_O$  learn both concept and semantics

$$\langle \boldsymbol{w}_O^y, \boldsymbol{c}_k \rangle, \langle \boldsymbol{w}_O^y, \boldsymbol{d}_k \rangle = \Omega(1)$$

 $\implies$  this allows to leverage label contains in semantics of  $x_q$  for output prediction

Each task k is defined via a task function  $F_k^{\circ}$  (Kim et al., 2024; Kim and Suzuki, 2024)

$$F_k^{\circ}(\boldsymbol{x}) = \boldsymbol{\beta}_k^{\top} \boldsymbol{f}^{\circ}(\boldsymbol{x})$$

where  $\beta_k$  is (linear) task-specific and  $f^{\circ}(x)$  is (nonlinear) task-common features.

### Key idea:

- Pretraining: learn  $f^{\circ}$
- *In-context*: adapt to  $\beta_k$

Given pretraining-data (K tasks)

$$\left\{ \begin{pmatrix} \boldsymbol{x}_{1,k} & \cdots & \boldsymbol{x}_{L,k} & \boldsymbol{x}_{q,k} \\ y_{1,k} & \cdots & y_{L,k} & 0 \end{pmatrix}, y_{q,k} \right\}_{k=1}^{K}$$

Kim and Suzuki (2024) considers linear transformer

$$\frac{1}{L} \sum_{\ell=1}^{L} y_{\ell,k} \boldsymbol{h}_{\mu}(\boldsymbol{x}_{\ell,k})^{\top} \boldsymbol{\Gamma} \boldsymbol{h}_{\mu}(\boldsymbol{x}_{q,k}) \xrightarrow{\mathsf{predict}} y_{q,k}$$

with a mean-field neural network as feature embedding (infinite limit of two-layer MLP):

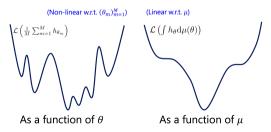
$$\underbrace{\boldsymbol{h}_{\theta_m}(\boldsymbol{x}) = \frac{1}{m} \sum_{r=1}^m \boldsymbol{a}_r \sigma(\boldsymbol{w}_r^\top \boldsymbol{x})}_{\text{two-laver MLP}} \xrightarrow{\text{as } m \to \infty} \underbrace{\boldsymbol{h}_{\mu}(\boldsymbol{x}) = \int \boldsymbol{a} \sigma(\boldsymbol{w}^\top \boldsymbol{x}) \mathrm{d}\mu(\boldsymbol{a}, \boldsymbol{w})}_{\text{mean-field limit}}$$

Minimize expected ICL risk  $(K \to \infty, L \to \infty)$  w.r.t.  $\mu$  and  $\Gamma$ 

$$\mathcal{L}(\mu, \boldsymbol{\Gamma}) = \mathbb{E}_{\boldsymbol{x}_q} \left[ \| \boldsymbol{f}^{\circ}(\boldsymbol{x}_q) - \mathbb{E}_{\boldsymbol{x}} [\boldsymbol{f}^{\circ}(\boldsymbol{x}) \boldsymbol{h}_{\mu}(\boldsymbol{x})^{\top}] \boldsymbol{\Gamma} \boldsymbol{h}_{\mu}(\boldsymbol{x}_q) \|^2 \right]$$

Key idea: pretraining to  $\mathcal{L}=0$ , so that for unseen task  $oldsymbol{eta}_{\mathrm{new}}$ ,

$$ilde{y}_q = \mathbb{E}_{m{x}}[m{eta}_{ ext{new}}^ op m{f}^\circ(m{x})m{h}_\mu(m{x})^ op] m{\Gamma}m{h}_\mu( ilde{m{x}}_q) = m{eta}_{ ext{new}}^ op m{f}^\circ( ilde{m{x}}_q)$$



Feature learning under two time-scale dynamics ( $\Gamma$  converges first)

$$\mathcal{L}(\mu) = \min_{\boldsymbol{\Gamma}} \mathcal{L}(\mu, \boldsymbol{\Gamma}) = \mathbb{E}_{\boldsymbol{x}_q} \left[ \| \boldsymbol{f}^{\circ}(\boldsymbol{x}_q) - \boldsymbol{\Sigma}_{\mu^{\circ}, \mu} \boldsymbol{\Sigma}_{\mu, \mu}^{-1} \boldsymbol{h}_{\mu}(\boldsymbol{x}_q) \|^2 \right]$$

where  $\Sigma_{\mu,\nu} = \mathbb{E}_{m{x}}[m{h}_{\mu}(m{x})m{h}_{
u}^{ op}(m{x})]$  is the feature covariance, and  $\mu^{\circ}$  satisfies  $m{h}_{\mu^{\circ}} = m{f}^{\circ}$ .

Wasserstein gradient flow escapes strict saddles and converges to global minimum (Kim and Suzuki, 2024):

• Nonlinear feature learning:  $h_{\mu} o Rf^{\circ}$  (for some invertible matrix R with bounded norm).

# OTHER RELEVANT WORKS [1]

Li et al. 2024. How do nonlinear transformers learn and generalize in in-context learning? *International Conference on Machine Learning (ICML 2024)*.

Nichani et al. 2024. How transformers learn causal structure with gradient descent. *International Conference on Machine Learning (ICML 2024).* 

Chen et al. 2024. Unveiling induction heads: Provable training dynamics and feature learning in transformers. *Advances in Neural Information Processing Systems (NeurIPS 2024).* 

Oko et al. 2024. Pretrained transformer efficiently learns low-dimensional target functions in-context. *Advances in Neural Information Processing Systems (NeurIPS 2024).* 

Bu et al. 2025. Provable In-Context Vector Arithmetic via Retrieving Task Concepts. *International Conference on Machine Learning (ICML 2025)*.

Nishikawa et al. 2025. Nonlinear transformers can perform inference-time feature learning. *International Conference on Machine Learning (ICML 2025).* 

# OTHER RELEVANT WORKS [2]

Yang et al. 2025. Multi-head Transformers Provably Learn Symbolic Multi-step Reasoning via Gradient Descent. *Advances in Neural Information Processing Systems (NeurIPS 2025).* 

# **CONCLUSION AND OUTLOOK**

#### CONCLUSION AND OUTLOOK

- **Feature learning** underlies the *success of deep learning* and provides a *theoretical* framework for understanding, controlling and improving deep learning
  - Benign overfitting (CNN, Transformer)
  - Training strategies (Adam, Sign-GD, SAM, Label noise)
  - Foundation models (contrastive pre-training, diffusion models, in-context learning)
  - and many more

Understanding: Unbox the black-box to study internal representation

Controlling: Manipulate the latent features for controlled model output

Improving: Leverage learned features for model safety, privacy, and robustness.

# THANK YOU!

# REFERENCES [1]

- Bu, D., Huang, W., Han, A., Nitanda, A., Suzuki, T., Zhang, Q., and Wong, H.-S. (2024). Provably transformers harness multi-concept word semantics for efficient in-context learning. *Advances in Neural Information Processing Systems*, 37:63342–63405.
- Cao, Y., Chen, Z., Belkin, M., and Gu, Q. (2022). Benign overfitting in two-layer convolutional neural networks. *Advances in Neural Information Processing Systems*, 35:25237–25250.
- Chen, Z., Zhang, J., Kou, Y., Chen, X., Hsieh, C.-J., and Gu, Q. (2023). Why does sharpness-aware minimization generalize better than sgd? *Advances in Neural Information Processing Systems*, 36:72325–72376.
- Han, A., Huang, W., Cao, Y., and Zou, D. (2025a). On the feature learning in diffusion models. In *The Thirteenth International Conference on Learning Representations*.

# REFERENCES [2]

- Han, A., Huang, W., Zhou, Z., Niu, G., Chen, W., Yan, J., Takeda, A., and Suzuki, T. (2025b). On the role of label noise in the feature learning process. In *International Conference on Machine Learning*.
- Ho, J., Jain, A., and Abbeel, P. (2020). Denoising diffusion probabilistic models. *Advances in Neural Information Processing Systems*, 33:6840–6851.
- Huang, W., Han, A., Chen, Y., Cao, Y., Xu, Z., and Suzuki, T. (2024). On the comparison between multi-modal and single-modal contrastive learning. *Advances in Neural Information Processing Systems*, 37:81549–81605.
- Huang, W., Han, A., Song, Y., Chen, Y., Wu, D., Zou, D., and Suzuki, T. (2025). How does label noise gradient descent improve generalization in the low snr regime? *Advances in Neural Information Processing Systems*.

# REFERENCES [3]

- Jiang, J., Huang, W., Zhang, M., Suzuki, T., and Nie, L. (2024). Unveil benign overfitting for transformer in vision: Training dynamics, convergence, and generalization. *Advances in Neural Information Processing Systems*, 37:135464–135625.
- Kim, J., Nakamaki, T., and Suzuki, T. (2024). Transformers are minimax optimal nonparametric in-context learners. *Advances in Neural Information Processing Systems*, 37:106667–106713.
- Kim, J. and Suzuki, T. (2024). Transformers learn nonlinear features in context: nonconvex mean-field dynamics on the attention landscape. In *International Conference on Machine Learning*, pages 24527–24561.
- Kou, Y., Chen, Z., Chen, Y., and Gu, Q. (2023). Benign overfitting in two-layer relu convolutional neural networks. In *International Conference on Machine Learning*, pages 17615–17659. PMLR.

# REFERENCES [4]

- Li, B., Huang, W., Han, A., Zhou, Z., Suzuki, T., Zhu, J., and Chen, J. (2025). On the optimization and generalization of two-layer transformers with sign gradient descent. In *International Conference on Learning Representations*.
- Zou, D., Cao, Y., Li, Y., and Gu, Q. (2023). Understanding the generalization of adam in learning neural networks with proper regularization. In *The Eleventh International Conference on Learning Representations*.